Inventory Formulas

Basic EOO

(cost of good not considered when the same for all Q)

$$EOQ = \sqrt{\frac{2DS}{H}} \qquad TC = \frac{Q}{2} * H + \frac{D}{Q} * S + [P * D]$$

EOQ with Quantity Discount (COG must be considered. This is much more complicated if H is a function of P)

$$TC = \frac{Q}{2} * H + \frac{D}{Q} * S + P * D$$

RO

Economic Run Size

(Production Order Quantity)

$$I_{Max} = ERS * \left(\frac{P-U}{P}\right)$$

 $TC = \frac{I_{Max}}{2} * H + \frac{D}{O} * S$

ROP = d * LT

 $ROP = d * LT + Z_{SL} * \sqrt{LT} * \sigma_d$

 $ROP = d * LT + Z_{SL} * d * \sigma_{LT}$

$$ERS = \sqrt{\frac{2DS}{H}} * \sqrt{\frac{P}{P-U}}$$

Reorder Point

Constant demand, Lead time

Demand variable

Lead Time variable

Demand & Lead Time Variable

$$ROP = d * LT + Z_{SL} * \sqrt{LT * \sigma_d^2 + d^2 * \sigma_{LT}^2}$$

ROP Shortages

Units short per cycle

Annual Service Level

Fixed Interval

Assuming variable d, LT constant

$$Q = d * (OI + LT) + Z_{SL} * \sqrt{(OI + LT)} * \sigma_d - A$$

Single Period

$$SL = \frac{C_S}{C_S + C_e}$$

$$Q = d + Z_{SL} * \sigma_d$$

TC = total relevant cost \mathbf{Q} = amount ordered or produced at a time \mathbf{D} = Demand (e.g. annual) \mathbf{H} = holding cost per unit S = cost per startup ororder processed \mathbf{P} = price per unit

$$P =$$
 production rate
 $U =$ rate of use
 $I_{max} =$ maximum Inventory

- $\mathbf{d} = \text{demand}$
- S_d = standard deviation of demand LT = lead time
- \mathbf{S}_{LT} = standard deviation of lead time
- $\mathbf{Z}_{st} = \mathbf{Z}$ score corresponding to a desired service level
- **SL** = probability of meeting demand during an order cycle

note: the expression for $\sigma_{_{dLT}}\,$ is the same as those used for ROP, and depends on whether demand and/or lead time vary.

- **Q** = Amount to order \mathbf{A} = amount on hand **OI** = order interval
- $\mathbf{C}_{s} = \text{Cost of Shortage (lost profit)}$
- $\mathbf{C}_{\mathbf{a}} = \text{cost of excess}$ (cost of good less any salvage value, plus any disposal cost)

RJB, December 11, 1999

- $E_{(N)} = E_{(n)} * \overline{O}$

 $SL_{Annual} = 1 - \frac{E_{(n)}}{D}$

 $E_{(n)} = E_{(7)} * \mathbf{\sigma}_{dIT}$

$$E(n) = E(n) * \frac{D}{2}$$